
CENG3430 Rapid Prototyping of Digital Systems

Lecture 04:

Combinational Circuit and

Sequential Circuit

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 2

Combinational Circuit

• Combinational Circuit: no memory

– Outputs are a function of the present inputs only.

• As soon as inputs change, the values of previous outputs are lost.

• It has no internal state (i.e., has no memory).

• Common Examples: Comparator, Encoder/Decoder, Full/Half Adder,

Multiplexer, Bi-directional Bus, etc.

– Rule: You can build a combinational circuit using either
concurrent statements (i.e., statements outside process)

or sequential statements (i.e., statements inside process) .

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 3

Combinational

Circuit

External

Inputs

External

Outputs

Modeling Combinational Logic (1/3)

• Three typical ways for modeling a combinational logic:

1) Logic/Schematic Diagram shows the wiring and

connections of each individual logic gate.

2) Boolean Expression is an expression in Boolean algebra

that represents the logic circuit.

3) Truth Table provides a concise list that shows all the

output states for each possible combination of inputs

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 4

https://www.electronics-tutorials.ws/combination/comb_1.html

architecture com_arch of comb is

signal X, Y: std_logic;

begin

X <= not (A and B);

Y <= not (A or B);

Q <= (X and C) and Y;

end com_arch;

A

B

C

X

Y

Q

Logic/Schematic Diagram

Modeling Combinational Logic (2/3)

• Three typical ways for modeling a combinational logic:

1) Logic/Schematic Diagram shows the wiring and

connections of each individual logic gate.

2) Boolean Expression is an expression in Boolean algebra

that represents the logic circuit.

3) Truth Table provides a concise list that shows all the

output states for each possible combination of inputs

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 5

https://www.electronics-tutorials.ws/combination/comb_1.html

architecture com_arch of comb is

begin

Q <= (not (A and B)) and

(not (A or B)) and C;

end com_arch;

𝐐 = 𝐀 ⋅ 𝐁 ⋅ 𝐀 + 𝐁 ⋅ 𝐂

Boolean Expression
How?

A

B

C

X

Y

Q

Logic/Schematic Diagram

https://isaaccomputerscience.org/concepts/sys_bool_expression_for_circuit

Modeling Combinational Logic (3/3)

• Three typical ways for modeling a combinational logic:

1) Logic/Schematic Diagram shows the wiring and

connections of each individual logic gate.

2) Boolean Expression is an expression in Boolean algebra

that represents the logic circuit.

3) Truth Table provides a concise list that shows all the

output states for each possible combination of inputs

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 6

A B C Q

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

process (A, B, C)

begin

if(A = '0' and B = '0' and C = '1') then

Q <= '1';

else

Q <= '0';

end if;

end process;

Sequential Circuit

Sequential Circuit

• Sequential Circuit: has memory

– Outputs are a function of the present inputs and the

previous outputs (i.e., the internal state).

• It changes outputs based on inputs; but the outputs also depend

upon previous outputs (i.e., the internal state) (i.e., has memory).

• Example: Latch, Flip-Flop, Finite State Machine, etc.

– Rule: You must build a sequential circuit with only
sequential statements (i.e., statements inside process).

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 7

Combinational

Circuit

Memory

External

Inputs

External

Outputs

Internal Inputs

(Present State)

Internal Outputs

(Next State)

Combinational vs. Sequential Circuit

• Combinational Circuit: no memory

 Outputs are a function of the present inputs only.

 Rule: Use either concurrent or sequential statements.

• Sequential Circuit: has memory

 Outputs are a function of the present inputs and the

previous outputs (i.e., the internal state).

 Rule: Must use sequential statements (i.e., process) .

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 8

Sequential Circuit

Combinational

Circuit

Memory

External

Inputs

External

Outputs

Internal Inputs

(Present State)

Internal Outputs

(Next State)

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 9

Recall: Combinational Circuit

• Combinational Circuit: no memory

 Outputs are a function of the present inputs only.

 Rule: Use either concurrent or sequential statements.

• Sequential Circuit: has memory

 Outputs are a function of the present inputs and the

previous outputs (i.e., the internal state).

 Rule: Must use sequential statements (i.e., process) .

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 10

Sequential Circuit

Combinational

Circuit

Memory

External

Inputs

External

Outputs

Internal Inputs

(Present State)

Internal Outputs

(Next State)

Combinational Logic as a Process

• Consider a simple combinational logic:

c <= a and b;

• This logic can be also modeled as a process:

– All signals referenced in process must be in sensitivity list.

entity And_Good is

port (a, b: in std_logic; c: out std_logic);

end And_Good;

architecture Synthesis_Good of And_Good is

begin

process (a, b) -- sensitive to signals a and/or b

begin

c <= a and b; -- c updated

end process;

end;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 11

out01

out00

Combinational Circuit: Decoder (1/2)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
entity decoder_ex is
port (in0,in1: in std_logic;

out00,out01,out10,out11: out std_logic);
end decoder_ex;
architecture decoder_ex_arch of decoder_ex is

begin
process (in0, in1)
begin

if in0 = '0' and in1 = '0' then
out00 <= '1';

else

out00 <= '0';
end if;
if in0 = '0' and in1 = '1' then
out01 <= '1';

else
out01 <= '0';

end if;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 12

in

0

in

1

out

00

out

01

out

10

out

11

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

Combinational Circuit: Decoder (2/2)

…

if in0 = '1' and in1 = '0' then
out10 <= '1';

else
out10 <= '0';

end if;

if in0 = '1' and in1 = '1' then
out11 <= '1';

else

out11 <= '0';
end if;

end process;

end decoder_ex_arch;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 13

in

0

in

1

out

00

out

01

out

10

out

11

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1
out11

out10

in0

in1

out

00

out

01

out

10

out

11
https://www.allaboutcircuits.com/textbook/digital/chpt-9/decoder/

Class Exercise 4.1

• Implement the Encoder based on the given table:

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 14

Student ID:

Name:

Date:

port(
);

…
architecture encoder_ex_arch of encoder_ex is
begin
process ()
begin

end process;
end encoder_ex_arch;

in

00

in

01

in

10

in

11

out

0

out

1

1 0 0 0 0 0

0 1 0 0 0 1

0 0 1 0 1 0

0 0 0 1 1 1

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 16

Combinational Circuit: Multiplexer

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity mux_ex is

port (in1,in2,sel: in std_logic;

out1: out std_logic);

end mux_ex;

architecture mux_ex_arch of mux_ex is

begin

process (in1, in2, sel)

begin

if sel = '0' then

out1 <= in1; -- select in1

else

out1 <= in2; -- select in2

end if;

end process;

end mux_ex_arch;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 17

MUX

?

?

?

?

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity tri_ex is

port (in1, enable: in std_logic;

out1: out std_logic);

end tri_ex;

architecture tri_ex_arch of tri_ex is

begin

out1 <= in1 when enable = '1' else 'Z';

end tri_ex_arch;
CENG3430 Lec04: Combinational Circuit and Sequential Circuit 18

in1 out1

enable
in1 enable out1

0 0 Z

1 0 Z

0 1 0

1 1 1

Recall: Tri-state Buffer

Class Exercise 4.2

• Specify the I/O signals in the circuit:

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 19

Student ID:

Name:

Date:

entity mux_ex is

port (in1,in2,sel: in std_logic;

out1: out std_logic);

end mux_ex;

architecture mux_ex_arch of mux_ex is

begin

process (in1, in2, sel)

begin

if sel = '0' then

out1 <= in1;

else

out1 <= in2;

end if;

end process;

end mux_ex_arch;

MUX

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 21

entity inout_ex is

port (io1, io2: inout std_logic;

ctrl: in std_logic);

end inout_ex;

architecture inout_ex_arch of inout_ex is

begin

process (io1, io2, ctrl) is begin

if (ctrl = '1') then io1 <= io2;

else io1 <= 'Z';

end if;

end process;

process (io1, io2, ctrl) is begin

if (ctrl = '0') then io2 <= io1;

else io2 <= 'Z';

end if;

end process;

end inout_ex_arch;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 22

Combinational Circuit: Bi-directional Bus

? ?

?

io1 follows “io2.in”

io2 follows “io1.in”

Class Exercise 4.3

• Specify I/O signals:

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 23

Student ID:

Name:

Date:

entity inout_ex is

port (io1, io2: inout std_logic;

ctrl: in std_logic);

end inout_ex;

architecture inout_ex_arch of inout_ex is

begin

process (io1, io2, ctrl) is begin

if (ctrl = '1') then io1 <= io2;

else io1 <= 'Z';

end if;

end process;

process (io1, io2, ctrl) is begin

if (ctrl = '0') then io2 <= io1;

else io2 <= 'Z';

end if;

end process;

end inout_ex_arch; ______

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 25

Recall: Sequential Circuit

• Combinational Circuit: no memory

 Outputs are a function of the present inputs only.

 Rule: Use either concurrent or sequential statements.

• Sequential Circuit: has memory

 Outputs are a function of the present inputs and the

previous outputs (i.e., the internal state).

 Rule: Must use sequential statements (i.e., process) .

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 26

Sequential Circuit

Combinational

Circuit

Memory

External

Inputs

External

Outputs

Internal Inputs

(Present State)

Internal Outputs

(Next State)

Latches and Flip Flops

• Latches and Flip-flops (FF) are the basic elements

used to store information.

– Each latch and flip flop can keep one bit of data.

• The main difference between latch and flip-flop:

– A latch continuously checks input and changes the output

whenever there is a change in input.

• A latch has no clock signal.

– A flip-flop continuously checks input and changes the

output only at times determined by the clock signal.

• A flip flop has a clock signal.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 27

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 28

Sequential Circuit: Latch (1/2)

• Latches are asynchronous (no CLOCK signal).

– It changes output only in response to input.

• Case Study: D Latch

– When enable line C is high, the output Q follows input D.

→ That is why D latch is also called as transparent latch.

• When enable line C is asserted, the latch is said to be transparent.

– When C falls, the last state of D input is trapped and held.

→ That is why the latch has memory!

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 29

https://www.edgefx.in/digital-electronics-latches-and-flip-flops/

Data need to be held.

0

1

1

Sequential Circuit: Latch (2/2)

1 library IEEE;--(ok vivado 2014.4)

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity latch_ex is

4 port (C, D: in std_logic;

5 Q: out std_logic);

6 end latch_ex;

7 architecture latch_ex_arch of latch_ex is

8 begin

9 process(C, D) -- sensitivity list

10 begin

11 if (C = '1') then

12 Q <= D;

13 end if;

-- no change (memory)

14 end process;

15 end latch_ex_arch;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 30

https://www.edgefx.in/digital-electronics-latches-and-flip-flops/

D Q

C

Class Exercise 4.4

• Given a D latch, draw Q in the following figure:

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 31

Student ID:

Name:

Date:

D

C

Q

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 33

Sequential Circuit: Flip-flop

• A Latch is a non-clock-controlled memory device.

 It has no CLOCK signal.

• A Flip-flop (FF) is a clock-controlled memory device.

 Different from a Latch, it has a CLOCK signal as input.

 It stores the input value (i.e., low or high) and outputs the

stored value only in response to the CLOCK signal.

• Positive-Edge-Triggered: At every low to high of CLOCK.

• Negative-Edge-Triggered: At every high to low of CLOCK.

 The value can be reset asynchronously or synchronously.

• Async. Reset: Reset the value anytime.

• Sync. Reset: Reset the value on positive or negative clock edges.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 34http://macao.communications.museum/eng/exhibition/secondfloor/moreinfo/FlipFlop.html

 It changes output only in response

to data input (i.e., the value is set

asynchronously).

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 35

Positive-Edge-Triggered FF with Async. Reset
1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity dff_async is

4 port(D,CLK,RESET: in std_logic;

5 Q: out std_logic);

6 end dff_async;

7 architecture dff_async_arch of dff_async is

8 begin

9 process(CLK, RESET) -- sensitivity list
10 begin

11 if (RESET = '1') then
12 Q <= '0'; -- Reset Q immediately

13 elsif CLK = '1' and CLK'event then
14 Q <= D; -- Q follows input D

15 end if;

-- no change (so has memory)
16 end process;

17 end dff_async_arch;

QD

CLK

Positive-

Edge-

Triggered

D FF

RESET

Positive-

edge-

triggered



Recall: Attributes (Lec01)

• Another important signal attribute is the 'event.

– This attribute yields a Boolean value of TRUE if an event

has just occurred on the signal.

– It is used primarily to determine if a clock has transitioned.

• Example (more in Lec04):

…

port(my_in, clock: in std_logic;

my_out: out std_logic);

…

if clock = '1' and clock'event then

my_out <= my_in;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 36

Class Exercise 4.5

• Consider the following VHDL implementation of a

positive-edge-triggered FF with asynchronous reset:

– When will line 9 be executed?

Answer: __

– Which signal is more “powerful”? CLK or RESET?

Answer: __
CENG3430 Lec04: Combinational Circuit and Sequential Circuit 37

Student ID:

Name:

Date:

...

9 process(CLK, RESET) -- sensitivity list
10 begin

11 if (RESET = '1') then
12 Q <= '0'; -- Reset Q

13 elsif CLK = '1' and CLK'event then
14 Q <= D; -- Q follows input D

15 end if;

-- no change (so has memory)
16 end process;

...

Class Exercise 4.6

• Given a Positive-edge-triggered D

Flip-flop with async. reset, draw the

output Q.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 39

CLK

D

Q

Student ID:

Name:

Date:

RESET

QD

CLK

Positive-

Edge-

Triggered

D FF

RESET

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 41

Positive-Edge-Triggered FF with Sync. Reset

QD

CLK

Positive-

Edge-

Triggered

D FF

RESET1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity dff_sync is

4 port(D,CLK,RESET: in std_logic;

5 Q: out std_logic);

6 end dff_sync;

7 architecture dff_sync_arch of dff_sync is begin

8 process(CLK)
9 begin

10 if CLK = '1' and CLK'event then
11 if (RESET = '1') then
12 Q <= '0'; -- Reset Q

13 else
14 Q <= D; -- Q follows input D

15 end if;
16 end if;

-- no change (so has memory)
17 end process;

18 end dff_sync_arch;

Positive-

edge-

triggered



 RESET can be removed (why?)

Class Exercise 4.7

• Given a Positive-edge-triggered D

Flip-flop with sync. reset, draw the

output Q.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 42

CLK

D

Q

Student ID:

Name:

Date:

RESET

QD

CLK

Positive-

Edge-

Triggered

D FF

RESET

• The order of the statements inside the process

determines asynchronous reset or synchronous reset.

– Asynchronous Reset (check RESET first!)

– Synchronous Reset (check CLK first!)

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 44

Async. Reset vs. Sync. Reset (1/2)

11 if (RESET = '1') then
12 Q <= '0'; -- Reset Q

13 elsif CLK = '1' and CLK'event then
14 Q <= D; -- Q follows input D

15 end if;

10 if CLK = '1' and CLK'event then
11 if (RESET = '1') then
12 Q <= '0'; -- Reset Q

13 else
14 Q <= D; -- Q follows input D

15 end if;
16 end if;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 45

Async. Reset vs. Sync. Reset (2/2)

CLK

D

Q

RESET

Q

Synchronous

Reset

Asynchronous

Reset

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 46

• Finite State Machine (FSM): A system jumps from

one state to another:

– Within a pool of finite states, and

– Upon clock edges and/or input transitions.

• Example of FSM: traffic light, digital watch, CPU, etc.

• Two crucial factors: time (clock edge) and state (feedback)

Finite State Machine (FSM)

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 47

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 48

Clock Edge Detection

• Both “wait until” and “if” statements can be

used to detect the clock edge (e.g., CLK):

• “wait until” statement:

– wait until CLK = '1'; -- rising edge

– wait until CLK = '0'; -- falling edge

• “if” statement:

– if CLK'event and CLK = '1' -- rising edge

– if CLK'event and CLK = '0' -- falling edge

OR

– if(rising_edge(CLK)) -- rising edge

– if(falling_edge(CLK)) -- falling edge

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 49

• rising_edge() function in std_logic_1164 library

– It results TRUE when there is an edge transition in the signal

s, the present value is '1' and the last value is '0'.

– If the last value is something like 'Z' or 'U', it returns a FALSE.

• The statement (clk'event and clk='1')

– It results TRUE when the there is an edge transition in the

clk and the present value is '1'.

– It does not see whether the last value is '0' or not.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 50

rising_edge(CLK) vs. CLK'event

http://vhdlguru.blogspot.hk/2010/04/difference-between-risingedgeclk-and.html

Use rising_edge() / falling_edge() with “if” statements!

CENG3430 Lec04: Combinational Circuit and Sequential Circuit

When to use “wait until” or “if”? (1/2)

• Synchronous Process: Computes values only on

clock edges (i.e., only sensitive/sync. to clock signal).

– Rule: Use “wait-until” or “if” for synchronous process:

process

begin

wait until clk='1';

…

end process

Note: IEEE VHDL requires that a process with a wait statement must not
have a sensitivity list, and the first statement must be wait until.

process (clk)

begin

…

if(rising_edge(clk))

…

end process 51

Usage

of
“wait

until”

Usage

of
“if”

 The first statement must be wait until.

 NO sensitivity list implies that there is one clock signal.

 The clock signal must be in the sensitivity list.

 NOT necessary to be the first line.

When to use “wait until” or “if”? (2/2)

• Asynchronous Process: Computes values on clock

edges or when asynchronous conditions are TRUE.

– That is, it must be sensitive to the clock signal (if any), and

to all inputs that may affect the asynchronous behavior.

– Rule: Only use “if” for asynchronous process:

process (clk, input_a, input_b, …)

begin

…

if(rising_edge(clk))

…

end process

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 52

Usage

of
“if”

 The sensitivity list

should include the

clock signal, and all

inputs that may affect

asynchronous behavior.

Simply use “if” statements for both sync. and async. processes!

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 53

Feed-forward and Feedback Paths

• So far, we mostly focus on logic with feed-forward (or

open-loop) paths.

• Now, we are going to learn feedback (or closed-loop)
paths─the key step of making a finite state machine.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 54

Controller Plant

Sensor

Direct Feedback Path

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity feedback_1 is

port(a,clk,reset: in std_logic;

c: buffer std_logic);

end feedback_1;

architecture feedback_1_arch of feedback_1 is

begin

process(clk, reset) -- async.

begin

if reset = '1' then c <= '0';

elsif rising_edge(clk) then

c <= not(a and c);

end if;

end process;

end feedback_1_arch ;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 55

 Signal c forms a closed loop.
• not(a and c) takes effect at

the next rising clock edge.
• The current c holds for one cycle.

 “<=” is like a flip-flop.

a c

clk

D Q

reset

Internal Feedback: inout or buffer

• Recall (Lec01): There are 4 modes of I/O pins:

1) in: Data flows in only

2) out: Data flows out only (cannot be read back by the entity)

3) inout: Data flows bi-directionally (i.e., in or out)

4) buffer: Similar to out but it can be read back by the entity

• Both buffer and inout can be read back internally.

– inout can also read external input signals.
CENG3430 Lec04: Combinational Circuit and Sequential Circuit 56

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 57

Types of Finite State Machines

• Moore Machine:

– Outputs are a function of

the present state only.

• Mealy Machine:

– Outputs are a function of

the present state and

the present inputs.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 58

Even

Odd

Reset

0/0 1/1

1/1

0/0

State

/

input

/

output

Even

0

Odd

1

Reset

0 1

1

0

https://www.slideshare.net/mirfanjum1/moore-and-mealy-machines-29553482

Suggestion: Maintain the internal state explicitly!

Combinational Logic

Sequential Logic

architecture moore_arch of fsm is

signal s: bit; -- internal state
begin
process (s)
begin

OUTX <= not s; -- output
end process;
process (CLOCK, RESET)

begin
if RESET = '1' then s <= '0';
elsif rising_edge(CLOCK) then

s <= not (INX and s); -- feedback
end if;

end process;

end moore_arch;

Moore Machine

• Moore Machine: outputs rely on present state only.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 59

Combinational Logic

Sequential Logic

architecture mealy_arch of fsm is
signal s: bit; -- internal state
begin
process (INX, s)
begin
OUTX <= (INX or s); -- output

end process;
process (CLOCK, RESET)
begin
if RESET = '1' then s <= '0';
elsif rising_edge(CLOCK) then

s <= not (INX and s); -- feedback
end if;

end process;
end mealy_arch;

Mealy Machine

• Mealy Machine: outputs depend on state and inputs.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 60

CENG3430 Lec04: Combinational Circuit and Sequential Circuit

Combinational Logic

Sequential Logic

61

• Up/Down Counters: Generate a sequence of

counting patterns according to the clock and inputs.
use IEEE.Numeric_Std.ALL;
entity counter is
port(CLK: in std_logic;

RESET: in std_logic;
COUNT: out std_logic_vector(3 downto 0));

end counter;
architecture counter_arch of counter is
signal s: std_logic_vector(3 downto 0); -- internal state
begin
COUNT <= s; -- output
process(CLK, RESET)
begin
if(RESET = '1') then s <= "0000";
else
if(rising_edge(CLK)) then
s <= std_logic_vector(unsigned(s) + 1); -- feedback

end if;
end if;

end process;
end counter_arch;

FSM Example 1) Up/Down Counter

FSM Example 1) Up/Down Counter (2/2)

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 62

• VHDL is strongly-

typed language.

– Data objects of

different base types

CANNOT to assigned

to each other without

using type-casting or

type-conversion.

• Type-casting: Move

between

std_logic_vector
and signed/unsigned.

• Type-conversion:

Move between

signed/unsigned and

integer.

https://www.bitweenie.com/listings/vhdl-type-conversion/

• Pattern Generator: Generates any pattern we want.

– Example: the control unit of a CPU, traffic light, etc.

• Given the following machine of 4 states: A, B, C and D.

– The machine has an asynchronous RESET, a clock signal

CLK and a 1-bit synchronous input signal INX.

– The machine also has a 2-bit output signal OUTX.
CENG3430 Lec04: Combinational Circuit and Sequential Circuit 63

A
OUTX=“01”

B
OUTX=“11”

C
OUTX=“10”

D
OUTX=“00”

INX=‘0’

INX=‘0’

INX=‘1’

INX=‘1’INX=‘0’

INX=‘1’

INX=‘1’

RESET
RESET=‘1’ INX=‘0’

FSM Example 2) Pattern Generator (1/3)

Sequential

Logic
Combinational

Logic

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 64

library IEEE;

use IEEE.std_logic_1164.all;

entity pat_gen is port(

RESET,CLOCK,INX: in STD_LOGIC;
OUTX: out STD_LOGIC_VECTOR(1 downto 0));

end pat_gen;

architecture arch of pat_gen is

type state_type is (A,B,C,D);
signal s: state_type; -- state
begin

process(CLOCK, RESET)

begin

if RESET = '1' then

s <= A;
elsif rising_edge(CLOCK) then

-- feedback
case s is
when A =>
if INX = '1' then s <= A;
else s <= B; end if;

when B =>
if INX = '1' then s <= D;
else s <= C; end if;

when C =>
if INX = '1' then s <= C;
else s <= A; end if;

when D =>
if INX = '1' then s <= C;
else s <= A; end if;

end case;
end if;

end process;

process(s)
begin

case s is
when A => OUTX <= "01";
when B => OUTX <= "11";
when C => OUTX <= "10";
when D => OUTX <= "00";

end case;
end process;

end arch;

FSM Example 2) Pattern Generator (2/3)

• Encoding methods for representing patterns/states:
– Binary Encoding: Using N flip-flops to represent 2N states.

• Less flip-flops but more combinational logics

– One-hot Encoding: Using N flip-flops for N states.

• More flip-flops but less combination logic

– Xilinx default seeting is one-hot encoding.

• Change at synthesis → options

• http://www.xilinx.com/itp/xilinx4/data/docs/sim/vtex9.html

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 65

FSM Example 2) Pattern Generator (3/3)

Class Exercise 4.8

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 66

Student ID:

Name:

Date:

• Complete a Mealy Machine

that recognizes sequence “10”:

architecture arch of mealy_fsm is

type state_type is (S0, S1);

signal s: std_logic; -- state

begin

process(CLK, RESET) -- seq

begin

if(RESET = '1') then s <= __;

else

if(rising_edge(CLK)) then

case s is

when S0 =>

if input = __ then

s <= __; -- feedback

else

s <= __; -- feedback

end if;

when S1 =>

if input = __ then

s <= __; -- feedback

else

s <= __; -- feedback

end if;

end case;

end if;

end if;

end process;

OUTX <= __ when (s=__ and INX=__)

else __; -- output

end arch;

INX OUTX

Rule of Thumb: VHDL Coding Tips

 Maintain the internal state(s) explicitly

 Separate combinational and sequential logics

– Write at least two processes: one for combinational logic,

and the other for sequential logic

• Maintain the internal state(s) using a sequential process

• Drive the output(s) using a combination process

 Keep every process as simple as possible

– Partition a large process into multiple small ones

 Put every signal (that your process must be

sensitive to its changes) in the sensitivity list.

 Avoid assigning a signal from multi-processes

– It may cause the “multi-driven” issue.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 68

Summary

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 69

