
CENG3430 Rapid Prototyping of Digital Systems

Lecture 04:

Combinational Circuit and

Sequential Circuit

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 2

Combinational Circuit

• Combinational Circuit: no memory

– Outputs are a function of the present inputs only.

• As soon as inputs change, the values of previous outputs are lost.

• It has no internal state (i.e., has no memory).

• Common Examples: Comparator, Encoder/Decoder, Full/Half Adder,

Multiplexer, Bi-directional Bus, etc.

– Rule: You can build a combinational circuit using either
concurrent statements (i.e., statements outside process)

or sequential statements (i.e., statements inside process) .

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 3

Combinational

Circuit

External

Inputs

External

Outputs

Modeling Combinational Logic (1/3)

• Three typical ways for modeling a combinational logic:

1) Logic/Schematic Diagram shows the wiring and

connections of each individual logic gate.

2) Boolean Expression is an expression in Boolean algebra

that represents the logic circuit.

3) Truth Table provides a concise list that shows all the

output states for each possible combination of inputs

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 4

https://www.electronics-tutorials.ws/combination/comb_1.html

architecture com_arch of comb is

signal X, Y: std_logic;

begin

X <= not (A and B);

Y <= not (A or B);

Q <= (X and C) and Y;

end com_arch;

A

B

C

X

Y

Q

Logic/Schematic Diagram

Modeling Combinational Logic (2/3)

• Three typical ways for modeling a combinational logic:

1) Logic/Schematic Diagram shows the wiring and

connections of each individual logic gate.

2) Boolean Expression is an expression in Boolean algebra

that represents the logic circuit.

3) Truth Table provides a concise list that shows all the

output states for each possible combination of inputs

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 5

https://www.electronics-tutorials.ws/combination/comb_1.html

architecture com_arch of comb is

begin

Q <= (not (A and B)) and

(not (A or B)) and C;

end com_arch;

𝐐 = 𝐀 ⋅ 𝐁 ⋅ 𝐀 + 𝐁 ⋅ 𝐂

Boolean Expression
How?

A

B

C

X

Y

Q

Logic/Schematic Diagram

https://isaaccomputerscience.org/concepts/sys_bool_expression_for_circuit

Modeling Combinational Logic (3/3)

• Three typical ways for modeling a combinational logic:

1) Logic/Schematic Diagram shows the wiring and

connections of each individual logic gate.

2) Boolean Expression is an expression in Boolean algebra

that represents the logic circuit.

3) Truth Table provides a concise list that shows all the

output states for each possible combination of inputs

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 6

A B C Q

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

process (A, B, C)

begin

if(A = '0' and B = '0' and C = '1') then

Q <= '1';

else

Q <= '0';

end if;

end process;

Sequential Circuit

Sequential Circuit

• Sequential Circuit: has memory

– Outputs are a function of the present inputs and the

previous outputs (i.e., the internal state).

• It changes outputs based on inputs; but the outputs also depend

upon previous outputs (i.e., the internal state) (i.e., has memory).

• Example: Latch, Flip-Flop, Finite State Machine, etc.

– Rule: You must build a sequential circuit with only
sequential statements (i.e., statements inside process).

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 7

Combinational

Circuit

Memory

External

Inputs

External

Outputs

Internal Inputs

(Present State)

Internal Outputs

(Next State)

Combinational vs. Sequential Circuit

• Combinational Circuit: no memory

 Outputs are a function of the present inputs only.

 Rule: Use either concurrent or sequential statements.

• Sequential Circuit: has memory

 Outputs are a function of the present inputs and the

previous outputs (i.e., the internal state).

 Rule: Must use sequential statements (i.e., process) .

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 8

Sequential Circuit

Combinational

Circuit

Memory

External

Inputs

External

Outputs

Internal Inputs

(Present State)

Internal Outputs

(Next State)

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 9

Recall: Combinational Circuit

• Combinational Circuit: no memory

 Outputs are a function of the present inputs only.

 Rule: Use either concurrent or sequential statements.

• Sequential Circuit: has memory

 Outputs are a function of the present inputs and the

previous outputs (i.e., the internal state).

 Rule: Must use sequential statements (i.e., process) .

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 10

Sequential Circuit

Combinational

Circuit

Memory

External

Inputs

External

Outputs

Internal Inputs

(Present State)

Internal Outputs

(Next State)

Combinational Logic as a Process

• Consider a simple combinational logic:

c <= a and b;

• This logic can be also modeled as a process:

– All signals referenced in process must be in sensitivity list.

entity And_Good is

port (a, b: in std_logic; c: out std_logic);

end And_Good;

architecture Synthesis_Good of And_Good is

begin

process (a, b) -- sensitive to signals a and/or b

begin

c <= a and b; -- c updated

end process;

end;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 11

out01

out00

Combinational Circuit: Decoder (1/2)

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
entity decoder_ex is
port (in0,in1: in std_logic;

out00,out01,out10,out11: out std_logic);
end decoder_ex;
architecture decoder_ex_arch of decoder_ex is

begin
process (in0, in1)
begin

if in0 = '0' and in1 = '0' then
out00 <= '1';

else

out00 <= '0';
end if;
if in0 = '0' and in1 = '1' then
out01 <= '1';

else
out01 <= '0';

end if;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 12

in

0

in

1

out

00

out

01

out

10

out

11

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

Combinational Circuit: Decoder (2/2)

…

if in0 = '1' and in1 = '0' then
out10 <= '1';

else
out10 <= '0';

end if;

if in0 = '1' and in1 = '1' then
out11 <= '1';

else

out11 <= '0';
end if;

end process;

end decoder_ex_arch;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 13

in

0

in

1

out

00

out

01

out

10

out

11

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1
out11

out10

in0

in1

out

00

out

01

out

10

out

11
https://www.allaboutcircuits.com/textbook/digital/chpt-9/decoder/

Class Exercise 4.1

• Implement the Encoder based on the given table:

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 14

Student ID:

Name:

Date:

port(
);

…
architecture encoder_ex_arch of encoder_ex is
begin
process ()
begin

end process;
end encoder_ex_arch;

in

00

in

01

in

10

in

11

out

0

out

1

1 0 0 0 0 0

0 1 0 0 0 1

0 0 1 0 1 0

0 0 0 1 1 1

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 16

Combinational Circuit: Multiplexer

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity mux_ex is

port (in1,in2,sel: in std_logic;

out1: out std_logic);

end mux_ex;

architecture mux_ex_arch of mux_ex is

begin

process (in1, in2, sel)

begin

if sel = '0' then

out1 <= in1; -- select in1

else

out1 <= in2; -- select in2

end if;

end process;

end mux_ex_arch;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 17

MUX

?

?

?

?

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity tri_ex is

port (in1, enable: in std_logic;

out1: out std_logic);

end tri_ex;

architecture tri_ex_arch of tri_ex is

begin

out1 <= in1 when enable = '1' else 'Z';

end tri_ex_arch;
CENG3430 Lec04: Combinational Circuit and Sequential Circuit 18

in1 out1

enable
in1 enable out1

0 0 Z

1 0 Z

0 1 0

1 1 1

Recall: Tri-state Buffer

Class Exercise 4.2

• Specify the I/O signals in the circuit:

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 19

Student ID:

Name:

Date:

entity mux_ex is

port (in1,in2,sel: in std_logic;

out1: out std_logic);

end mux_ex;

architecture mux_ex_arch of mux_ex is

begin

process (in1, in2, sel)

begin

if sel = '0' then

out1 <= in1;

else

out1 <= in2;

end if;

end process;

end mux_ex_arch;

MUX

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 21

entity inout_ex is

port (io1, io2: inout std_logic;

ctrl: in std_logic);

end inout_ex;

architecture inout_ex_arch of inout_ex is

begin

process (io1, io2, ctrl) is begin

if (ctrl = '1') then io1 <= io2;

else io1 <= 'Z';

end if;

end process;

process (io1, io2, ctrl) is begin

if (ctrl = '0') then io2 <= io1;

else io2 <= 'Z';

end if;

end process;

end inout_ex_arch;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 22

Combinational Circuit: Bi-directional Bus

? ?

?

io1 follows “io2.in”

io2 follows “io1.in”

Class Exercise 4.3

• Specify I/O signals:

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 23

Student ID:

Name:

Date:

entity inout_ex is

port (io1, io2: inout std_logic;

ctrl: in std_logic);

end inout_ex;

architecture inout_ex_arch of inout_ex is

begin

process (io1, io2, ctrl) is begin

if (ctrl = '1') then io1 <= io2;

else io1 <= 'Z';

end if;

end process;

process (io1, io2, ctrl) is begin

if (ctrl = '0') then io2 <= io1;

else io2 <= 'Z';

end if;

end process;

end inout_ex_arch; ______

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 25

Recall: Sequential Circuit

• Combinational Circuit: no memory

 Outputs are a function of the present inputs only.

 Rule: Use either concurrent or sequential statements.

• Sequential Circuit: has memory

 Outputs are a function of the present inputs and the

previous outputs (i.e., the internal state).

 Rule: Must use sequential statements (i.e., process) .

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 26

Sequential Circuit

Combinational

Circuit

Memory

External

Inputs

External

Outputs

Internal Inputs

(Present State)

Internal Outputs

(Next State)

Latches and Flip Flops

• Latches and Flip-flops (FF) are the basic elements

used to store information.

– Each latch and flip flop can keep one bit of data.

• The main difference between latch and flip-flop:

– A latch continuously checks input and changes the output

whenever there is a change in input.

• A latch has no clock signal.

– A flip-flop continuously checks input and changes the

output only at times determined by the clock signal.

• A flip flop has a clock signal.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 27

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 28

Sequential Circuit: Latch (1/2)

• Latches are asynchronous (no CLOCK signal).

– It changes output only in response to input.

• Case Study: D Latch

– When enable line C is high, the output Q follows input D.

→ That is why D latch is also called as transparent latch.

• When enable line C is asserted, the latch is said to be transparent.

– When C falls, the last state of D input is trapped and held.

→ That is why the latch has memory!

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 29

https://www.edgefx.in/digital-electronics-latches-and-flip-flops/

Data need to be held.

0

1

1

Sequential Circuit: Latch (2/2)

1 library IEEE;--(ok vivado 2014.4)

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity latch_ex is

4 port (C, D: in std_logic;

5 Q: out std_logic);

6 end latch_ex;

7 architecture latch_ex_arch of latch_ex is

8 begin

9 process(C, D) -- sensitivity list

10 begin

11 if (C = '1') then

12 Q <= D;

13 end if;

-- no change (memory)

14 end process;

15 end latch_ex_arch;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 30

https://www.edgefx.in/digital-electronics-latches-and-flip-flops/

D Q

C

Class Exercise 4.4

• Given a D latch, draw Q in the following figure:

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 31

Student ID:

Name:

Date:

D

C

Q

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 33

Sequential Circuit: Flip-flop

• A Latch is a non-clock-controlled memory device.

 It has no CLOCK signal.

• A Flip-flop (FF) is a clock-controlled memory device.

 Different from a Latch, it has a CLOCK signal as input.

 It stores the input value (i.e., low or high) and outputs the

stored value only in response to the CLOCK signal.

• Positive-Edge-Triggered: At every low to high of CLOCK.

• Negative-Edge-Triggered: At every high to low of CLOCK.

 The value can be reset asynchronously or synchronously.

• Async. Reset: Reset the value anytime.

• Sync. Reset: Reset the value on positive or negative clock edges.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 34http://macao.communications.museum/eng/exhibition/secondfloor/moreinfo/FlipFlop.html

 It changes output only in response

to data input (i.e., the value is set

asynchronously).

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 35

Positive-Edge-Triggered FF with Async. Reset
1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity dff_async is

4 port(D,CLK,RESET: in std_logic;

5 Q: out std_logic);

6 end dff_async;

7 architecture dff_async_arch of dff_async is

8 begin

9 process(CLK, RESET) -- sensitivity list
10 begin

11 if (RESET = '1') then
12 Q <= '0'; -- Reset Q immediately

13 elsif CLK = '1' and CLK'event then
14 Q <= D; -- Q follows input D

15 end if;

-- no change (so has memory)
16 end process;

17 end dff_async_arch;

QD

CLK

Positive-

Edge-

Triggered

D FF

RESET

Positive-

edge-

triggered

Recall: Attributes (Lec01)

• Another important signal attribute is the 'event.

– This attribute yields a Boolean value of TRUE if an event

has just occurred on the signal.

– It is used primarily to determine if a clock has transitioned.

• Example (more in Lec04):

…

port(my_in, clock: in std_logic;

my_out: out std_logic);

…

if clock = '1' and clock'event then

my_out <= my_in;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 36

Class Exercise 4.5

• Consider the following VHDL implementation of a

positive-edge-triggered FF with asynchronous reset:

– When will line 9 be executed?

Answer: __

– Which signal is more “powerful”? CLK or RESET?

Answer: __
CENG3430 Lec04: Combinational Circuit and Sequential Circuit 37

Student ID:

Name:

Date:

...

9 process(CLK, RESET) -- sensitivity list
10 begin

11 if (RESET = '1') then
12 Q <= '0'; -- Reset Q

13 elsif CLK = '1' and CLK'event then
14 Q <= D; -- Q follows input D

15 end if;

-- no change (so has memory)
16 end process;

...

Class Exercise 4.6

• Given a Positive-edge-triggered D

Flip-flop with async. reset, draw the

output Q.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 39

CLK

D

Q

Student ID:

Name:

Date:

RESET

QD

CLK

Positive-

Edge-

Triggered

D FF

RESET

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 41

Positive-Edge-Triggered FF with Sync. Reset

QD

CLK

Positive-

Edge-

Triggered

D FF

RESET1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 entity dff_sync is

4 port(D,CLK,RESET: in std_logic;

5 Q: out std_logic);

6 end dff_sync;

7 architecture dff_sync_arch of dff_sync is begin

8 process(CLK)
9 begin

10 if CLK = '1' and CLK'event then
11 if (RESET = '1') then
12 Q <= '0'; -- Reset Q

13 else
14 Q <= D; -- Q follows input D

15 end if;
16 end if;

-- no change (so has memory)
17 end process;

18 end dff_sync_arch;

Positive-

edge-

triggered

 RESET can be removed (why?)

Class Exercise 4.7

• Given a Positive-edge-triggered D

Flip-flop with sync. reset, draw the

output Q.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 42

CLK

D

Q

Student ID:

Name:

Date:

RESET

QD

CLK

Positive-

Edge-

Triggered

D FF

RESET

• The order of the statements inside the process

determines asynchronous reset or synchronous reset.

– Asynchronous Reset (check RESET first!)

– Synchronous Reset (check CLK first!)

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 44

Async. Reset vs. Sync. Reset (1/2)

11 if (RESET = '1') then
12 Q <= '0'; -- Reset Q

13 elsif CLK = '1' and CLK'event then
14 Q <= D; -- Q follows input D

15 end if;

10 if CLK = '1' and CLK'event then
11 if (RESET = '1') then
12 Q <= '0'; -- Reset Q

13 else
14 Q <= D; -- Q follows input D

15 end if;
16 end if;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 45

Async. Reset vs. Sync. Reset (2/2)

CLK

D

Q

RESET

Q

Synchronous

Reset

Asynchronous

Reset

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 46

• Finite State Machine (FSM): A system jumps from

one state to another:

– Within a pool of finite states, and

– Upon clock edges and/or input transitions.

• Example of FSM: traffic light, digital watch, CPU, etc.

• Two crucial factors: time (clock edge) and state (feedback)

Finite State Machine (FSM)

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 47

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 48

Clock Edge Detection

• Both “wait until” and “if” statements can be

used to detect the clock edge (e.g., CLK):

• “wait until” statement:

– wait until CLK = '1'; -- rising edge

– wait until CLK = '0'; -- falling edge

• “if” statement:

– if CLK'event and CLK = '1' -- rising edge

– if CLK'event and CLK = '0' -- falling edge

OR

– if(rising_edge(CLK)) -- rising edge

– if(falling_edge(CLK)) -- falling edge

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 49

• rising_edge() function in std_logic_1164 library

– It results TRUE when there is an edge transition in the signal

s, the present value is '1' and the last value is '0'.

– If the last value is something like 'Z' or 'U', it returns a FALSE.

• The statement (clk'event and clk='1')

– It results TRUE when the there is an edge transition in the

clk and the present value is '1'.

– It does not see whether the last value is '0' or not.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 50

rising_edge(CLK) vs. CLK'event

http://vhdlguru.blogspot.hk/2010/04/difference-between-risingedgeclk-and.html

Use rising_edge() / falling_edge() with “if” statements!

CENG3430 Lec04: Combinational Circuit and Sequential Circuit

When to use “wait until” or “if”? (1/2)

• Synchronous Process: Computes values only on

clock edges (i.e., only sensitive/sync. to clock signal).

– Rule: Use “wait-until” or “if” for synchronous process:

process

begin

wait until clk='1';

…

end process

Note: IEEE VHDL requires that a process with a wait statement must not
have a sensitivity list, and the first statement must be wait until.

process (clk)

begin

…

if(rising_edge(clk))

…

end process 51

Usage

of
“wait

until”

Usage

of
“if”

 The first statement must be wait until.

 NO sensitivity list implies that there is one clock signal.

 The clock signal must be in the sensitivity list.

 NOT necessary to be the first line.

When to use “wait until” or “if”? (2/2)

• Asynchronous Process: Computes values on clock

edges or when asynchronous conditions are TRUE.

– That is, it must be sensitive to the clock signal (if any), and

to all inputs that may affect the asynchronous behavior.

– Rule: Only use “if” for asynchronous process:

process (clk, input_a, input_b, …)

begin

…

if(rising_edge(clk))

…

end process

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 52

Usage

of
“if”

 The sensitivity list

should include the

clock signal, and all

inputs that may affect

asynchronous behavior.

Simply use “if” statements for both sync. and async. processes!

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 53

Feed-forward and Feedback Paths

• So far, we mostly focus on logic with feed-forward (or

open-loop) paths.

• Now, we are going to learn feedback (or closed-loop)
paths─the key step of making a finite state machine.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 54

Controller Plant

Sensor

Direct Feedback Path

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity feedback_1 is

port(a,clk,reset: in std_logic;

c: buffer std_logic);

end feedback_1;

architecture feedback_1_arch of feedback_1 is

begin

process(clk, reset) -- async.

begin

if reset = '1' then c <= '0';

elsif rising_edge(clk) then

c <= not(a and c);

end if;

end process;

end feedback_1_arch ;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 55

 Signal c forms a closed loop.
• not(a and c) takes effect at

the next rising clock edge.
• The current c holds for one cycle.

 “<=” is like a flip-flop.

a c

clk

D Q

reset

Internal Feedback: inout or buffer

• Recall (Lec01): There are 4 modes of I/O pins:

1) in: Data flows in only

2) out: Data flows out only (cannot be read back by the entity)

3) inout: Data flows bi-directionally (i.e., in or out)

4) buffer: Similar to out but it can be read back by the entity

• Both buffer and inout can be read back internally.

– inout can also read external input signals.
CENG3430 Lec04: Combinational Circuit and Sequential Circuit 56

Outline

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 57

Types of Finite State Machines

• Moore Machine:

– Outputs are a function of

the present state only.

• Mealy Machine:

– Outputs are a function of

the present state and

the present inputs.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 58

Even

Odd

Reset

0/0 1/1

1/1

0/0

State

/

input

/

output

Even

0

Odd

1

Reset

0 1

1

0

https://www.slideshare.net/mirfanjum1/moore-and-mealy-machines-29553482

Suggestion: Maintain the internal state explicitly!

Combinational Logic

Sequential Logic

architecture moore_arch of fsm is

signal s: bit; -- internal state
begin
process (s)
begin

OUTX <= not s; -- output
end process;
process (CLOCK, RESET)

begin
if RESET = '1' then s <= '0';
elsif rising_edge(CLOCK) then

s <= not (INX and s); -- feedback
end if;

end process;

end moore_arch;

Moore Machine

• Moore Machine: outputs rely on present state only.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 59

Combinational Logic

Sequential Logic

architecture mealy_arch of fsm is
signal s: bit; -- internal state
begin
process (INX, s)
begin
OUTX <= (INX or s); -- output

end process;
process (CLOCK, RESET)
begin
if RESET = '1' then s <= '0';
elsif rising_edge(CLOCK) then

s <= not (INX and s); -- feedback
end if;

end process;
end mealy_arch;

Mealy Machine

• Mealy Machine: outputs depend on state and inputs.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 60

CENG3430 Lec04: Combinational Circuit and Sequential Circuit

Combinational Logic

Sequential Logic

61

• Up/Down Counters: Generate a sequence of

counting patterns according to the clock and inputs.
use IEEE.Numeric_Std.ALL;
entity counter is
port(CLK: in std_logic;

RESET: in std_logic;
COUNT: out std_logic_vector(3 downto 0));

end counter;
architecture counter_arch of counter is
signal s: std_logic_vector(3 downto 0); -- internal state
begin
COUNT <= s; -- output
process(CLK, RESET)
begin
if(RESET = '1') then s <= "0000";
else
if(rising_edge(CLK)) then
s <= std_logic_vector(unsigned(s) + 1); -- feedback

end if;
end if;

end process;
end counter_arch;

FSM Example 1) Up/Down Counter

FSM Example 1) Up/Down Counter (2/2)

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 62

• VHDL is strongly-

typed language.

– Data objects of

different base types

CANNOT to assigned

to each other without

using type-casting or

type-conversion.

• Type-casting: Move

between

std_logic_vector
and signed/unsigned.

• Type-conversion:

Move between

signed/unsigned and

integer.

https://www.bitweenie.com/listings/vhdl-type-conversion/

• Pattern Generator: Generates any pattern we want.

– Example: the control unit of a CPU, traffic light, etc.

• Given the following machine of 4 states: A, B, C and D.

– The machine has an asynchronous RESET, a clock signal

CLK and a 1-bit synchronous input signal INX.

– The machine also has a 2-bit output signal OUTX.
CENG3430 Lec04: Combinational Circuit and Sequential Circuit 63

A
OUTX=“01”

B
OUTX=“11”

C
OUTX=“10”

D
OUTX=“00”

INX=‘0’

INX=‘0’

INX=‘1’

INX=‘1’INX=‘0’

INX=‘1’

INX=‘1’

RESET
RESET=‘1’ INX=‘0’

FSM Example 2) Pattern Generator (1/3)

Sequential

Logic
Combinational

Logic

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 64

library IEEE;

use IEEE.std_logic_1164.all;

entity pat_gen is port(

RESET,CLOCK,INX: in STD_LOGIC;
OUTX: out STD_LOGIC_VECTOR(1 downto 0));

end pat_gen;

architecture arch of pat_gen is

type state_type is (A,B,C,D);
signal s: state_type; -- state
begin

process(CLOCK, RESET)

begin

if RESET = '1' then

s <= A;
elsif rising_edge(CLOCK) then

-- feedback
case s is
when A =>
if INX = '1' then s <= A;
else s <= B; end if;

when B =>
if INX = '1' then s <= D;
else s <= C; end if;

when C =>
if INX = '1' then s <= C;
else s <= A; end if;

when D =>
if INX = '1' then s <= C;
else s <= A; end if;

end case;
end if;

end process;

process(s)
begin

case s is
when A => OUTX <= "01";
when B => OUTX <= "11";
when C => OUTX <= "10";
when D => OUTX <= "00";

end case;
end process;

end arch;

FSM Example 2) Pattern Generator (2/3)

• Encoding methods for representing patterns/states:
– Binary Encoding: Using N flip-flops to represent 2N states.

• Less flip-flops but more combinational logics

– One-hot Encoding: Using N flip-flops for N states.

• More flip-flops but less combination logic

– Xilinx default seeting is one-hot encoding.

• Change at synthesis → options

• http://www.xilinx.com/itp/xilinx4/data/docs/sim/vtex9.html

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 65

FSM Example 2) Pattern Generator (3/3)

Class Exercise 4.8

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 66

Student ID:

Name:

Date:

• Complete a Mealy Machine

that recognizes sequence “10”:

architecture arch of mealy_fsm is

type state_type is (S0, S1);

signal s: std_logic; -- state

begin

process(CLK, RESET) -- seq

begin

if(RESET = '1') then s <= __;

else

if(rising_edge(CLK)) then

case s is

when S0 =>

if input = __ then

s <= __; -- feedback

else

s <= __; -- feedback

end if;

when S1 =>

if input = __ then

s <= __; -- feedback

else

s <= __; -- feedback

end if;

end case;

end if;

end if;

end process;

OUTX <= __ when (s=__ and INX=__)

else __; -- output

end arch;

INX OUTX

Rule of Thumb: VHDL Coding Tips

 Maintain the internal state(s) explicitly

 Separate combinational and sequential logics

– Write at least two processes: one for combinational logic,

and the other for sequential logic

• Maintain the internal state(s) using a sequential process

• Drive the output(s) using a combination process

 Keep every process as simple as possible

– Partition a large process into multiple small ones

 Put every signal (that your process must be

sensitive to its changes) in the sensitivity list.

 Avoid assigning a signal from multi-processes

– It may cause the “multi-driven” issue.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 68

Summary

• Combinational Circuit and Sequential Circuit

– Combinational Circuit: No Memory

• Decoder

• Multiplexer

• Bi-directional Bus

– Sequential Circuit: Has Memory

• Latch

• Flip-flop

– Asynchronous Reset and Synchronous Reset

• Finite State Machine (FSM)

– Clock Edge Detection

– Direct Feedback Path

– Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 69

