HE P LKF

The Chinese University of Hong Kong

CENG3430 Rapid Prototyping of Digital Systems
Lecture 04:

Combinational Circuit and
Sequential Circuit

Ming-Chang YANG

9 s A
S, SRER EE VI SR T EEET TR o SR
Eiﬁ B ! B ; ~
1 — [l -
N | 4 [i "
= WHE ! » e
e W '1 : ol I bbbbbbbbbb
- R 0 TR N R S S e vy
el P
|;~,j| wwwwwwww
\k\ .
~’- T
AL
R
e

mailto:mcyang@cse.cuhk.edu.hk

Outline

« Combinational Circuit and Sequential Circuit
— Combinational Circuit: No Memory
« Decoder
« Multiplexer
* Bi-directional Bus
— Sequential Circuit: Has Memory
* Latch
* Flip-flop
— Asynchronous Reset and Synchronous Reset

 Finite State Machine (FSM)
— Clock Edge Detection
— Direct Feedback Path
— Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 2

Combinational Circuit

« Combinational Circuit: no memory

— Outputs are a function of the present inputs only.

* As soon as inputs change, the values of previous outputs are lost.
* It has no internal state (i.e., has no memory).

« Common Examples: Comparator, Encoder/Decoder, Full/Half Adder,
Multiplexer, Bi-directional Bus, etc.

— Rule: You can build a combinational circuit using either
concurrent statements (i.e., statements outside process)
or sequential statements (i.e., statements inside process) .

External q o
Inputs Combinational

Circuit

External
Outputs

CENG3430 Lec04: Combinational Circuit and Sequential Circuit

Modeling Combinational Logic (1/3) %

« Three typical ways for modeling a combinational logic:

1) Logic/Schematic Diagram shows the wiring and
connections of each individual logic gate.

- . .] f [
Logic/Schematic Diagram architecture com arch of comb 1is

signal X, Y: std logic;

Dﬁix begin

Q X <= not (A and B);
C D_O Y <= not (A or B);
;I)c v Q <= (X and C) and Y;

end com_arch;

© >

https://ww.electronics-tutorials.ws/combination/comb_1.html

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 4

Modeling Combinational Logic (2/3)

« Three typical ways for modeling a combinational logic:

2) Boolean Expression is an expression in Boolean algebra
that represents the logic circuit.

Logic/Schematic Diagram Boolean Expression
Q=(A-B)-(A+B)-C
X
::::}b——— architecture com arch of comb 1s

Qi
Q <= (not (A and B)) and
—:j[::}ﬂ Y (not (A or B)) and C;

end com arch;

© >

https://ww.electronics-tutorials.ws/combination/comb_1.html

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 5

https://isaaccomputerscience.org/concepts/sys_bool_expression_for_circuit

Modeling Combinational Logic (3/3)

« Three typical ways for modeling a combinational logic:

P Pk OOOO

1

3) Truth Table provides a concise list that shows all the
output states for each possible combination of inputs

EMERECRECH rrocess (A, B, O

R O O PFr B+ O

1

P OFR, OFr O R

0

O O O O O -

0

begin
if(A= '0' and B
Q<= "1";
else
Q <= '0';
end 1if;

end process;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit

'0'

and C =

'l') then

Sequential Circuit

« Sequential Circuit: has memory

— Outputs are a function of the present inputs and the
previous outputs (i.e., the internal state).

* It changes outputs based on inputs; but the outputs also depend
upon previous outputs (i.e., the internal state) (i.e., has memory).

« Example: Latch, Flip-Flop, Finite State Machine, etc.

— Rule: You must build a sequential circuit with only
sequential statements (i.e., statements inside process).

Sequential Circuit

External > - > External
Inputs Comb_mat_lonal Outputs
> Circuit —

Internal Inputs Internal Outputs

(Present State) (Next State)

Memory «—

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 7

Combinational vs. Sequential Circuit %

oAl = & T

« Combinational Circuit: no memory
@ Outputs are a function of the present inputs only.
@ Rule: Use either concurrent or sequential statements.

« Sequential Circuit: has memory

@ Outputs are a function of the present inputs and the
previous outputs (i.e., the internal state).

@ Rule: Must use sequential statements (i.e., process).

Sequential Circuit

External - External
» Combinational >

Inputs T Outputs
—> Circuit —
Internal Inputs Internal Outputs
(Present State) (Next State)

Memory «—

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 8

Outline

« Combinational Circuit and Sequential Circuit
— Combinational Circuit: No Memory
» Decoder
« Multiplexer
* Bi-directional Bus

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 9

Recall: Combinational Circuit

« Combinational Circuit: no memory
@ Outputs are a function of the present inputs only.
@ Rule: Use either concurrent or sequential statements.

Sequential Circuit

External > - > External
Inputs Combinational Outputs

Circuit

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 10

Combinational Logic as a Process

« Consider a simple combinational logic:

c <= a and b;

* This logic can be also modeled as a process:
— All signals referenced in process must be in sensitivity list.
entity And Good 1s
port (a, b: in std logic; c: out std logic);
end And Good;

architecture Synthesis Good of And Good 1s
begin

process (a, b) —-- sensitive to signals a and/or b
begin
c <= a and b; —-- ¢ updated
end process;
end;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 11

Combinational Circuit: Decoder (1/2) A

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity decoder ex 1s
port (in0,inl: 1in std logic;
out00, out01,outl0,outll: out std logic);
end decoder ex;
architecture decoder ex arch of decoder ex 1is

begin
process (1n0, inl)
begin
if in0 = '0' and inl = '0' then
out00 <= '1"'; in | in | out | out | out | out
else o out00 o|l1|00(|01|10] 11
en?iwidf)(;)< 0t olol1]lo]o]o
if in0 = '0' and inl = '1l' then Of1(O 1 0 0)
out0l <= '1"';
olse out01 110]| O 0) 1 0)
out0l <= '0'; 1111 0 0) 0 1
end if;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 12

Combinational Circuit: Decoder (2/2)

G
oAl = & T

end process;
end decoder ex arch;

https://www.allaboutcircuits.com/textbook/digital/chpt-9/decoder/

CENG3430 Lec04: Combinational Circuit and Sequential Circuit

>
in1J—[JD¢ L

L

.Y
L—
Y

Sibiels

if in0 = '1l' and inl = '0' then
outl0 <= '1"'; in | in | out | out | out | out
else outlO ol1|00|01]|10] 11
outl0 <= '0';
end 1if: 010 1 0 0 0
if in0 = '1l' and inl = '1l' then O11] 0 1 0 0
outll <= '1";
olse outll 110([O 0 1 0
outll <= '0°'; 111101001
end if:
in0 out

out

Student ID:

Class Exercise 4.1 Namo:

* Implement the Encoder based on the given table:
port (

architecture encoder ex arch of encoder ex 1is
begin - -
process ()
begin

in | in | in | in |out| out

0O60(01(10|11| O 1

1 (0] 0(0O0 0) 0)

Ol 100 0 1

end process; 0]1]0]1[01]0
B PR T O Faah S eyt and Sequential Circuit ojojo|1|1]|1

Outline

« Combinational Circuit and Sequential Circuit
— Combinational Circuit: No Memory

« Multiplexer

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 16

Combinational Circuit: Multiplexer %

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity mux ex 1s
port (inl,in2,sel: 1n std logic;
outl: out std logic);
end mux ex;
architecture mux ex arch of mux ex 1s
begin
process (1nl, 1in2, sel)

begin . .
if sel = '0' then : :
outl <= inl; —- select 1inl

else
outl <= in2; - select 1inZ? ?
. MUX
end if; l ——
end process;
end mux ex arch; o

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 17

Recall: Tri-state Buffer

inl | enable | outl
enable
I 0 0 Z
inl (P » outl 1 0 Z
0 1 0
1 1 1

library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity tri ex 1s
port (inl, enable: in std logic;
outl: out std logic);

end tri ex;
architecture tri ex arch of tri ex 1is
begin

outl <= inl when enable = 'l' else 'Z';

end tri ex arch;
CENG3430 Lec04: Combinational Circuit and Sequential Circuit 18

Student ID:

Class Exercise 4.2 Name:

« Specify the I/O signals in the circuit:

entity mux ex 1s
port (inl,1n2,sel: 1n std logic;
outl: out std logic);
end mux ex; B
architecture mux ex arch of mux ex 1is
begin
process (1nl, 1in2, sel)

begin
if sel = '0' then S —_—
outl <= inl;
else
outl <= in2; - | >MUX

end if; l ——
end process;
end mux ex arch;
CENG3430 Lec04: Combinational Circuit and Sequential Circuit 19

Outline

« Combinational Circuit and Sequential Circuit
— Combinational Circuit: No Memory

* Bi-directional Bus

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 21

Combinational Circuilt: Bi-directional Bus

entity 1nout ex 1s ?
port (10l, 102: inout std logic;
ctrl: in std logic);
end 1nout ex;
architecture inout ex arch of inout ex 1s
begin
process (101, 102, ctrl) 1s begin 2 ?

1if (ctrl = '1l') then io0l <= 102;

else iol <= '72";

end if; iol follows “i02.in”]
end process;
process (10l, 102, ctrl) 1s begin

if (ctrl = '0') then io2 <= iol;
else i02 <= '72';
end if; 102 follows “iol . in”]

end process;
end 1nout ex arch;
CENG3430 Lec04: Combinational Circuit and Sequential Circuit 22

Student ID:

Class Exercise 4.3 Name:

entity inout ex 1s » Specify 1/0 signals:
port (10l, 102: inout std logic;

ctrl: in std logic); E—
end 1nout ex;
architecture inout ex arch of inout ex 1s
begin
process (10l, 102, ctrl) 1s begin
1if (ctrl = '1l'") then 10l <= 102;
else iol <= '72"; —_— _
end 1f;
end process;
process (10l, 102, ctrl) 1s begin

1if (ctrl = '0') then 102 <= iol;
else 102 <= '72'";
end 1f;
end process;
end 1nout ex arch; .

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 23

Outline

« Combinational Circuit and Sequential Circuit

— Sequential Circuit: Has Memory
* Latch
* Flip-flop
— Asynchronous Reset and Synchronous Reset

 Finite State Machine (FSM)
— Clock Edge Detection
— Direct Feedback Path
— Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 25

Recall: Sequential Circuit

« Sequential Circuit: has memory

@ Outputs are a function of the present inputs and the
previous outputs (i.e., the internal state).

@ Rule: Must use sequential statements (i.e., process).

Sequential Circuit

External > - > External
Inputs Comb_mat_lonal Outputs
> Circuit —

Internal Inputs Internal Outputs

(Present State) (Next State)

Memory «—

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 26

Latches and Flip Flops

« Latches and Flip-flops (FF) are the basic elements
used to store information.
— Each latch and flip flop can keep one bit of data.

« The main difference between latch and flip-flop:

— A latch continuously checks input and changes the output
whenever there is a change in input.
« Alatch has no clock signal.

— Aflip-flop continuously checks input and changes the
output only at times determined by the clock signal.
« Aflip flop has a clock signal.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit

27

Outline

« Combinational Circuit and Sequential Circuit

— Sequential Circuit: Has Memory
* Latch

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 28

Sequential Circuit: Latch (1/2)

« Latches are asynchronous (no CLOCK signal).
— It changes output only in response to input.

e Case Study: D Latch

— When enable line C is high, the output Q follows input D.

- That is why D latch is also called as transparent latch.
 When enable line C is asserted, the latch is said to be transparent.

— When C falls, the last state of D input is trapped and held.
- That is why the latch has memory!

5 . -1 Data need to be held.
P S o C D Next state of Q
0 X No change
c ? 1 0 Q = 0; Reset state
0 b Q = 1; Sel state
R
https://www.edgefx.in/digital-electronics-latches-and-flip-flops/

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 29

Sequential Circuit: Latch (2/2)

1 library IEEE;--(ok vivado 2014.4)

2 use IEEE.STD LOGIC 1164.ALL; —Jp ol—
3 entity latch ex is

4 port (C, D: 1n std logic; —Jc

5 Q: out std logic);

6 end latch ex;

7 architecture latch ex arch of latch ex 1s

8 begin

9 process (C, D) —— sensitivity list
10 begin
11 if (C = '1') then C D Mext state of Q
12 Q <= D; v 40 X No change
13 end ifc":h ()’j"%“ 1 0 Q = 0: Reset state

-- no change (memo

14 end process;g rY LI Q=__1.-; Sgt ?‘.‘?"‘?_

15 end latch ex arch;

https://www.edgefx.in/digital-electronics-latches-and-flip-flops/

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 30

Student ID:

Class Exercise 4.4 Name:

* Given a D latch, draw Q in the following figure:

D [\ S S

Next state of Q

— ngj:#a

No change
Q = 0; Resst state

- - O |0
- o X |O

Tl

-

Ol

Y
[1
w
|2
L1
&
@

D,

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 31

Outline

« Combinational Circuit and Sequential Circuit

— Sequential Circuit: Has Memory

* Flip-flop

— Asynchronous Reset and Synchronous Reset

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 33

Sequential Circuit: Flip-flop

« ALatch is a non-clock-controlled memory device.

® It has no CLOCK signal. Clock Period

@ It changes output only in response PRER Faling edoe
to data input (i.e., the value is set __| S
asynchronously). Clock width Rising edge

* AFlip-flop (FF) is a clock-controlled memory device.
@ Different from a Latch, it has a CLOCK signal as input.

@ It stores the input value (i.e., low or high) and outputs the
stored value only in response to the CLOCK signal.
« Positive-Edge-Triggered: At every low to high of CLOCK. _f_
* Negative-Edge-Triggered: At every high to low of CLOCK.1

® The value can be reset asynchronously or synchronously.
« Async. Reset: Reset the value anytime.
« Sync. Reset: Reset the value on positive or negative clock edges.

CENG3430 Lec04: Combinational CirCUit and Sequential Qriﬂwgo.Communications.museum/eng/exhibition/secondﬂoor/moreinfo/FIipFIop.html 34

Positive-Edge-Triggered FF with Reset

1 library IEEE; RESET

2 use IEEE.STD LOGIC 1164.ALL; {_

3 entity dff async is Positive-

4 port (D,CLK,RESET: in std logic; D— Edge- — Q
5 Q: out std logic); CLK — Triggered

6 end dff async;) DFF

7 architecture dff async arch of dff async 1s

8 begin

9 process(CLK, RESET) -- sensitivity list
10 begin
11 if (RESET = 'l') then
12 Q <= '0'; —— Reset Q i1mmediately Positive-
13 elsif CIK = 'l' and CLK'event then <« edge-
14 Q <= D;, —— Q follows input D triggered
15 end 1f;

-— no change (so has memory)
16 end process;
17 end dff async arch;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 35

Recall: Attributes (Lec01)

« Another important signal attribute is the 'event.
— This attribute yields a Boolean value of TRUE if an event

has just occurred on the signal.
— It is used primarily to determine if a clock has transitioned.

« Example (more in Lec04):

port (my in, clock: 1n std logic;

my out: out std logic);

1f eclock = '1'" and clock'event then

my out <= my 1in;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 36

Student ID:

Class Exercise 4.5 Name:

« Consider the following VHDL implementation of a
positive-edge-triggered FF with asynchronous reset:

9 process(CLK, RESET) -- sensitivity list
10 begin
11 if (RESET = 'l') then

12 QO <= '0"; —— Reset O

13 elsif CIK = 'l' and CILK'event then
14 Q <= D; -—— Q follows input D

15 end 1f;

-—- no change (so has memory)
16 end process;

— When will line 9 be executed?
Answer:
— Which signal is more “powerful™? CLK or RESET?

Answer:
CENG3430 Lec04: Combinational Circuit and Sequential Circuit 37

ClaSS Exercise 46 Student ID:

Name:

* Given a Positive-edge-triggered D RESET

Flip-flop with async. reset, draw the :

Positive-
output Q D —| Edge- |—Q

Triggered
CLK —D pFF

cx— /L S\

RESET

Q

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 39

Positive-Edge-Triggered FF with Reset

1 library IEEE; RESET — Positive-
2 use IEEE.STD LOGIC 1164.ALL; D—o:>_’ Edge- | 2
3 entity dff sync 1is Triggered
4 port (D,CLK,RESET: in std logic; CIK —> pEp
5 Q: out std logic);

6 end dff sync;

7 architecture dff sync arch of dff sync 1s begiln
8 process (CLK) < RESET can be removed (why?)

9 begin Positive-
10 if CIK = 'l' and CIK'event then <« edge-
11 if (RESET = 'l') then triggered
12 Q <= '0'"; —— Reset Q
13 else
14 Q <= D;, —— Q follows input D
15 end if;
16 end if;

-— no change (so has memory)
17 end process;
18 end dff sync arch; 41

ClaSS Exercise 47 Student ID:

Name:

* Given a Positive-edge-triggered D RE?ET
Flip-flop with sync. reset, draw the "
output Q D —| Edge- |—Q

Triggered
CLK —D pFF

cx— /L S\

RESET

Q

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 42

Async. Reset vs. Sync. Reset (1/2)

* The order of the statements inside the process
determines asynchronous reset or synchronous reset.
— Asynchronous Reset (check RESET first!)

11 if (RESET = 'l') then
12 QO <= '0"'"; —— Reset O
13 elsif CIK = 'l' and CLK'event then
14 Q <= D; -—— Q follows input D
15 end if;

— Synchronous Reset (check CLK first!)
10 i1f CIK = 'l' and CILK'event then
11 if (RESET = 'l') then
12 QO <= '0"; —— Reset O
13 else
14 Q <= D; —— Q follows input D
15 end if;
16 end if;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 44

Async. Reset vs. Sync. Reset (2/2) i

oAl = & T

CLK

o . S H RIS
. . 3 2
) . = .

.. . AN . D
. . R . LI
. : .ee : e
.
. X TN . otle, .
. e, . e, .
. . . —
. PEEEK . PEEK .
. R . s e® .
H o3 : 23 .
.
. . . otte, .

o
. . .

RESET

Asynchronous | g
Reset]

Q

Synchronous | g ; g
Reset |
Q : : : :

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 45

Outline

« Combinational Circuit and Sequential Circuit

— Sequential Circuit: Has Memory

 Finite State Machine (FSM)
— Clock Edge Detection
— Direct Feedback Path
— Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 46

Finite State Machine (FSM)

* Finite State Machine (FSM): A system jumps from
one state to another:
— Within a pool of finite states, and
— Upon clock edges and/or input transitions.

« Example of FSM: traffic light, digital watch, CPU, etc.

j*]

A

funer tuner

) ()0

funer

 Two crucial factors: time (clock edge) and state (feedback)

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 47

9
B

Outline

« Combinational Circuit and Sequential Circuit

— Sequential Circuit: Has Memory

 Finite State Machine (FSM)
— Clock Edge Detection

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 48

Clock Edge Detection

 Both "‘wait until” and “if”
used to detect the clock edge

e “wait until” statement:

statements can be
(e.g., CLK).

—wait until CLK = 'l'; -- rising edge
—wait until CLK = '0'; -- falling edge

e “j f” statement:
— 1f CLK'event and CLK =
—1f CLK'event and CLK =

OR
- 1f(rising edge (CLK))
- 1f(falling edge (CLK))

CENG3430 Lec04: Combinational Circuit and Sequential Circuit

'"l' —-- rising edge

'O' —-- falling edge

—-— rising edge

-— falling edge

49

-_-Tl!..-‘-'-

rising edge (CLK) VS. CLK'event L7

« rising edge () function in std_logic_1164 library

FUNCTION rising edge (SIGNAL s : std ulogic) RETURN BOOLEAN IS
BEGIN
RETURN (s'EVENT AND (To XOl(} = 'l‘} AND

N e
— It results TRUE when there is an edge transition in the signal
s, the present value is '1' and the last value is '0'.

— If the last value is something like 'z or 'U', it returns a FALSE.

* The statement (clk'event and clk='1")

— It results TRUE when the there is an edge transition in the
clk and the present value is '1".

— It does not see whether the last value is '0' or not.

Use rising edge() / falling edge () with “if” statements!

When to use “wait until” or “if”? (1/2)

« Synchronous Process: Computes values only on
clock edges (i.e., only sensitive/sync. to clock signal).

— Rule: Use “wait-until” or “i£” for synchronous process:
process < NO sensitivity list implies that there is one clock signal.
begin

wait until clk='l";< The first statement must be wait until.

Usage
of

“wait
until” end process

Note: IEEE VHDL requires that a process with a wait statement must not
have a sensitivity list, and the first statement must be wait until.

process (clk)< The clock signal must be in the sensitivity list.

begin
Usage
of . _ -
s £ if (rising_edge(clk)) < NOT necessary to be the first line.

end process 51

When to use “wait until” or “if”? (2/2)

 Asynchronous Process: Computes values on clock
edges or when asynchronous conditions are TRUE.

— That is, it must be sensitive to the clock signal (if any), and
to all inputs that may affect the asynchronous behavior.

— Rule: Only use “i£” for asynchronous process:

process (clk, input _a, input b, ..) <& The sensitivity list

begin should include the
Usage clock signal, and all
of inputs that may affect

if(rising edge(clk))

“1F” asynchronous behavior.

end process

Simply use “if” statements for both sync. and async. processes!

Outline

« Combinational Circuit and Sequential Circuit

— Sequential Circuit: Has Memory

 Finite State Machine (FSM)

— Direct Feedback Path

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 53

Feed-forward and Feedback Paths

« So far, we mostly focus on logic with feed-forward (or
open-loop) pat

1S.
.

APQ—>ControIIerH Plant }—»O—»
\ |

 Now, we are going to learn feedback (or closed-loop)
paths—the key step of making a finite state machine.

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 54

Direct Feedback Path

library IEEE;

use IEEE.STD LOGIC 1164.ALL; L
entity feedback 1 is a-| D Q¢
port (a,clk,reset: in std logic; clk —b
c: buffer std logic); :
end feedback 1; reset
architecture feedback 1 arch of feedback 1 1is
begin
process (clk, reset) —-- async.
begin
if reset = '1l' then c <= '0';

elsif rising edge(clk) then
c <= not(a and c); ® Signal ¢ forms a closed loop.

end 1f; not(a and c) takes effect at
end process; the next rising clock edge.
end feedback 1 arch ; . Thecunentchokbforonecyde.

" is like a flip-flop.

CENG3430 Lec04: Combinational Circuit and Sequentlal CII’CUIt 55

Internal Feedback: inout or buffer

* Recall (LecOl): There are 4 modes of 1/O pins:
1) in: Data flows in only
2) out: Data flows out only (cannot be read back by the entity)

3) inout: Data flows bi-directionally (i.e., in or out)
4) buffer: Similar to out but it can be read back by the entity

A (in) D D (out)

e g

— read back E (bUffer)
B (in) *};$—2 F (inout)

C (in) I
1 ;:G(out)

« Both buffer and inout can be read back internally.

— Inout can also read external input signals.
CENG3430 Lec04: Combinational Circuit and Sequential Circuit

56

Outline

« Combinational Circuit and Sequential Circuit

— Sequential Circuit: Has Memory

 Finite State Machine (FSM)

— Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 57

Types of Finite State Machines

 Moore Machine: Mealy Machine:
— Outputs are a function of — Outputs are a function of
the present state only. the present state and

the present inputs

(e
Reset ® Rese
ot | 1 o0t | 11
/
/

Q 1 output U 1/1

Suggestion: Maintain the internal state explicitly!

Moore Machine

* Moore Machine: outputs rely on present state only.
architecture moore arch of fsm 1s

signal s: bit; -- internal state
begin
process (s) Combinational Logic
begin
OUTX <= not s; —-- output
end process;
process (CLOCK, RESET) Sequential Logic
begin
1f RESET = '1l' then s <= '0';
elsif rising edge (CLOCK) then
s <= not (INX and s); -- feedback
end 1f;
end process;

CEN@%@Legppg)n];b%aﬁ%grgif. and Sequential Circuit 59

Mealy Machine

 Mealy Machine: outputs depend on state and inputs.

architecture mealy arch of fsm 1is
signal s: bit; -- internal state

begin
process (INX, s) Combinational Logic
begin
OUTX <= (INX or s); —-- output

end process;
process (CLOCK, RESET)
begin

1f RESET = '1l'" then s <= '0';

elsif rising edge (CLOCK) then

s <= not (INX and s); —-- feedback

end 1f;
end process;
end mealy arch;

CENG3430 Lec04: Combinati;al Circuit and Sequential Circuit 60

Sequential Logic

FSM Example 1) Up/Down Counter

« Up/Down Counters: Generate a sequence of

counting patterns according to the clock and inputs.

use IEEE.Numeric Std.ALL;
entity counter 1is
port (CLK: in std logic;
RESET: in std logic;
COUNT: out std logic vector (3 downto 0));
end counter;
architecture counter arch of counter 1s
signal s: std logic vector (3 downto 0); -- internal state
begin

COUNT <= s; -- output Combinational Loqic
process (CLK, RESET) Se tial L :
begin gquential LOJgIC
1f(RESET = '1') then s <= "0000";
else

1f(rising edge (CLK)) then
s <= std logic vector (unsigned(s) + 1); -- feedback
end if;
end if;
end process;
end counter arch; 61

FSM Example 1) Up/Down Counter (2/2)
* VHDL is strongly- umoers Bit Vetors

typed language.
— Data objects of

different base types S
CANNOT to assigned
to each other without
using type-casting or
type-conversion.

« Type-casting: Move
between

std logic vector
and signed/unsigned.

« Type-conversion:
Move between

signed/unsigned and
integer.

to_signed(l,S'length)

unsigned(V)

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 62

https://www.bitweenie.com/listings/vhdl-type-conversion/

FSM Example 2) Pattern Generator (1/3)

 Pattern Generator: Generates any pattern we want.
— Example: the control unit of a CPU, traffic light, etc.

« Given the following machine of 4 states: A, B, C and D.

— The machine has an asynchronous RESET, a clock signal
CLK and a 1-bit synchronous input signal INX.

— The machine also has a 2-bit output signal OUTX.
CENG3430 Lec04: Combinational Circuit and Sequential Circuit 63

FSM Example 2) Pattern Generator (2/3)

library IEEE;

use IEEE.std logic 1164.all;
entity pat gen 1s port (

RESET, CLOCK, INX: in STD LOGIC;

OUTX: out SID IOGIC VECTOR(1 downto 0));

end pat gen;
architecture arch of pat gen 1s
type state type is (A,B,C,D);
signal s: state type; -- state
begin
process (CLOCK, RESET
begin
1f RESET = '"1' then
s <= A;
elsif rising edge (CLOCK) then
—-- feedback
case s 1is
when A =>
if INX = '1l' then s <= A;
else s <= B; end if;

)Sequenﬂal
Logic

when B =>
if INX = '1l' then s <= D;
else s <= C; end 1if;
when C =>
1f INX = 'l' then s <= C;
else s <= A; end 1f;
when D =>
if INX = '1l' then s <= C;
else s <= A; end 1if;
end case;
end 1f;
end process;

Eggiiss () Combinational

case s is Logic
when A => OUTX <= "01";
when B => OUTX <= "11";
when C => OUTX <= "10";
when D => OUTX <= "00";
end case;
end process;
end arch;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 64

FSM Example 2) Pattern Generator (3/3)

« Encoding methods for representing patterns/states:
— Binary Encoding: Using N flip-flops to represent 2N states.
* Less flip-flops but more combinational logics

— One-hot Encoding: Using N flip-flops for N states.
« More flip-flops but less combination logic

— Xilinx default seeting Is one-hot encoding.
 Change at synthesis < options

* http://lwww.xilinx.com/itp/xilinx4/data/docs/sim/vtex9.html

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 65

Class Exercise 4.8

Student ID:
Name:

Complete a Mealy Machine

that recognizes sequence

architecture arch of mealy fsm 1is
type state type is (SO, S1);

signal s: std logic; -- state
begin
process (CLK, RESET) —-- seq
begin
1f(RESET = '1') then s <= ;
else
if (rising edge (CLK)) then
case s 1is
when SO0 =>
if input = then
s <= ; —- feedback
else
s <= ; —— feedback
end 1f;

CENG3430 Lec04: Combinational Circuit and Sequential Circuit

0/0 INX OUTX
1/0

Cf—ﬁz//”—_—_“‘\\
/_/

reset

1/0

u10u_

when S1 =>

1f input = then
s <= ; —-- feedback
else
s <= ; —-- feedback
end if;
end case;
end 1f;
end if;
end process;
OUTX <= when (s= and INX=)
else ; —-- output
end arch;

66

Rule of Thumb: VHDL Coding Tips

@ Maintain the internal state(s) explicitly

@ Separate combinational and sequential logics

— Write at least two processes: one for combinational logic,
and the other for sequential logic
« Maintain the internal state(s) using a sequential process
 Drive the output(s) using a combination process

® Keep every process as simple as possible
— Partition a large process into multiple small ones

@ Put every signal (that your process must be
sensitive to its changes) in the sensitivity list.

® Avoid assigning a signal from multi-processes

— It may cause the “multi-driven” issue. é;
CENG3430 Lec04: Combinational Circuit and Sequential Circuit 68

Summary

« Combinational Circuit and Sequential Circuit
— Combinational Circuit: No Memory
« Decoder
« Multiplexer
* Bi-directional Bus
— Sequential Circuit: Has Memory
* Latch
* Flip-flop
— Asynchronous Reset and Synchronous Reset

 Finite State Machine (FSM)
— Clock Edge Detection
— Direct Feedback Path
— Types and Examples

CENG3430 Lec04: Combinational Circuit and Sequential Circuit 69

